Newton Sketch: A Near Linear-Time Optimization Algorithm with Linear-Quadratic Convergence

نویسندگان

  • Mert Pilanci
  • Martin J. Wainwright
چکیده

We propose a randomized second-order method for optimization known as the Newton sketch: it is based on performing an approximate Newton step using a randomly projected Hessian. For self-concordant functions, we prove that the algorithm has superlinear convergence with exponentially high probability, with convergence and complexity guarantees that are independent of condition numbers and related problem-dependent quantities. Given a suitable initialization, similar guarantees also hold for strongly convex and smooth objectives without self-concordance. When implemented using randomized projections based on a subsampled Hadamard basis, the algorithm typically has substantially lower complexity than Newton’s method. We also describe extensions of our methods to programs involving convex constraints that are equipped with self-concordant barriers. We discuss and illustrate applications to linear programs, quadratic programs with convex constraints, logistic regression, and other generalized linear models, as well as semidefinite programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence

We propose a randomized second-order method for optimization known as the Newton Sketch: it is based on performing an approximate Newton step using a randomly projected or sub-sampled Hessian. For self-concordant functions, we prove that the algorithm has super-linear convergence with exponentially high probability, with convergence and complexity guarantees that are independent of condition nu...

متن کامل

Modify the linear search formula in the BFGS method to achieve global convergence.

<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...

متن کامل

Parallel Interior-Point Method for Linear and Quadratic Programs with Special Structure

This paper concerns the use of iterative solvers in interiorpoint methods for linear and quadratic programming problems. We state an adaptive termination rule for the inner iterative scheme and we prove the global convergence of the obtained algorithm, exploiting the theory developed for inexact Newton methods. This approach is promising for problems with special structure on parallel computers...

متن کامل

About One Sweep Algorithm for Solving Linear-Quadratic Optimization Problem with Unseparated Two-Point Boundary Conditions

In the paper a linear-quadratic optimization problem (LCTOR) with unseparated two-point boundary conditions is considered. To solve this problem is proposed a new sweep algorithm which increases doubles the dimension of the original system. In contrast to the well-known methods, here it refuses to solve linear matrix and nonlinear Riccati equations, since the solution of such multi-point optimi...

متن کامل

A Newton-picard Approach for Efficient Numerical Solution of Time-periodic Parabolic Pde Constrained Optimization Problems

We investigate an iterative method for the solution of time-periodic parabolic PDE constrained optimization problems. It is an inexact Sequential Quadratic Programming (iSQP) method based on the Newton-Picard approach. We present and analyze a linear quadratic model problem and prove optimal mesh-independent convergence rates. Additionally, we propose a two-grid variant of the Newton-Picard met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2017